IBM Research Albany Nanotech Center Is A Model To Emulate For CHIPS Act

With the passage of the CHIPS+ Act by Congress and its imminent signing by the President of the United States, a lot of attention has been paid to the construction of new semiconductor manufacturing megasites by Intel, TSMC, and Samsung. But beyond the manufacturing side of the semiconductor business, there is a significant need to invest in related areas such as research, talent training, small and medium business development, and academic cooperation. I recently had the opportunity to tour a prime example of such a facility that integrates all these other aspects of chip manufacturing into a tight industry, government, and academic partnership. That partnership has been going on for over 20 years in Albany New York where IBM Research has a nanotechnology center that is located adjacent to the State University of New York (SUNY) Albany campus. With significant investment by New York State through the New York Creates NY CREATES development agency, IBM in close partnership with several universities and industry partners is developing state-of-the-art semiconductor process technologies in working labs for the next generation of computer chips.

The center provides a unique facility for semiconductor research – its open environment facilitates collaboration between leading equipment and materials suppliers, researchers, engineers, academics, and EDA vendors. Presently, IBM has a manufacturing and research partnership with Samsung Electronics and a research partnership was announced with Intel last year. Key chipmaking suppliers such as ASML, KLA, and Tokyo Electric (TEL) have equipment installed, and are working actively with IBM developing advanced processes and metrology for leading edge technologies.

These facilities do not come cheap. It takes billions of dollars of investment and many years of research to achieve each new breakthrough. For example, the High-k metal gate took 15 years to go into products; the FinFET transistor, essential today, took 13 years; and the next generation transistor, the gate-all-around/nano sheet, which Samsung is putting into production now, was in development for 14 years. In addition, the cost to manufacture chips at each new process node is increasing 20-30% and the R&D costs are doubling for each node’s development. To continue supporting this strategic development, there needs to be a partnership between industry, academia, and government.

IBM Makes The Investment

You might ask why IBM, which sold off its semiconductor manufacturing facilities over the years, is so involved in this deep and expensive research. Well, for one, IBM is very, very good at semiconductor process development. The company pioneered several critical semiconductor technologies over the decades. But being good at a technology does not pay the bills, so IBM’s second motivation is that the company needs the best technology for its own Power and Z computers. To that end, IBM is primarily focused on developments that support high-performance computing and AI processing.

Additional strategic suppliers and partners help to scale these innovations beyond just IBM’s contribution. The best equipment from the world-class equipment suppliers provides a testbed for partners to experiment and advance the state-of-the-art technology. IBM along with its equipment partners have built specialized equipment where needed to experiment beyond the capabilities of standard equipment.

But IBM only succeeds if it can transfer the technology from the labs into production. To do so, IBM and Samsung have been working closely on process developments and the technology transfer.

MORE FROM FORBESIBM Goes Vertical To Scale Transistors

The NanoTech Center dovetails with the CHIPS Act in that it will allow the United States to develop leadership in manufacturing technologies. It can also allow smaller companies to test innovative technologies in this facility. The present fab building is running 24/7/365 and is highly utilized, but there’s space to build another building that can double significantly expand the clean room space. There’s also a plan for a building that will be able to support the next generation of ASML EUV equipment called high NA EUV.

The Future is Vertical

The Albany site also is a center for chiplet technology research. As semiconductor scaling slows, unique packaging solutions for multi-die chips will become the norm for high-performance and power-efficient computing. IBM Research has an active program of developing unique 2.5D and 3D die-stacking technologies. Today the preferred substrate for building these multi-die chips is still made from silicon, based on the availability of tools and manufacturing knowledge. There are still unique process steps that must be developed to handle the specialized processing, including laser debonding techniques.

IBM also works with test equipment manufacturers because building 3D structures with chiplets presents some unique testing challenges. Third party EDA vendors also need to be part of the development process, because the ultimate goal of chiplet-based design is to be able to combine chips from different process nodes and different foundries.

Today chiplet technology is embryonic, but the future will absolutely need this technology to build the next generation of data center hardware. The is a situation where the economics and technology are coming together at the right time.

Summary

The Albany NanoTech Center is a model for the semiconductor industry and demonstrates one way to bring researchers from various disciplines and various organizations together to advance the state-of-the-art semiconductor technology. But this model also needs to scale up and be replicated throughout North America. With more funding and more scale, there also needs to be an appropriately skilled workforce. Here is where the US needs to make investments in STEM education on par with the late 1950s Space Race and sites like Albany that offer R&D on leading-edge process development that should inspire more students to go into physics, chemistry, and electrical engineering and not into building the next crypto currency startup.

Tirias Research tracks and consults for companies throughout the electronics ecosystem from semiconductors to systems and sensors to the cloud. Members of the Tirias Research team have consulted for IBM, Intel, GlobalFoundries, Samsung, and other foundries.

Source: https://www.forbes.com/sites/tiriasresearch/2022/08/08/ibm-research-albany-nanotech-center-is-a-model-to-emulate-for-chips-act/