Enhancing AI Interactions: MCP Elicitation for Improved User Experience



Caroline Bishop
Sep 05, 2025 00:23

Discover how MCP elicitation enhances AI tool interactions by collecting missing information upfront, improving user experience through intuitive and seamless processes, according to GitHub’s latest insights.



Enhancing AI Interactions: MCP Elicitation for Improved User Experience

GitHub is pioneering a more seamless interaction between AI tools and users through the implementation of Model Context Protocol (MCP) elicitation. This approach aims to refine user experiences by gathering essential information upfront, thereby reducing friction and enhancing the functionality of AI-driven applications, according to GitHub’s blog.

Understanding MCP Elicitation

At its core, MCP elicitation involves the AI pausing to request necessary details from users before proceeding with a task, thus preventing the reliance on default assumptions that might not align with the user’s preferences. This functionality is currently supported by GitHub Copilot within Visual Studio Code, though its availability may vary across different AI applications.

Implementation Challenges

During a recent stream, GitHub’s Chris Reddington highlighted the challenges encountered while implementing elicitation in an MCP server for a turn-based game. Initially, the server had duplicative tools for different game types, leading to confusion and incorrect tool selection by AI agents. The solution involved consolidating tools and ensuring distinct naming conventions to clearly define each tool’s purpose.

Streamlining User Interactions

The refined approach allows users to initiate a game with personalized settings rather than default parameters. For instance, when a user requests a game of tic-tac-toe, the system identifies missing details such as difficulty level or player name, prompting the user for this information to tailor the game setup appropriately.

Technical Insights

The implementation of elicitation within the MCP server involves several key steps: checking for required parameters, identifying missing optional arguments, initiating elicitation to gather missing information, presenting schema-driven prompts, and completing the original request once all necessary data is collected.

Lessons Learned

Reddington’s development session underscored the importance of clear tool naming and iterative development. By refining tool names and consolidating functionality, the team reduced complexity and improved the user experience. Additionally, parsing initial user requests to elicit only missing information was crucial in refining the elicitation process.

Future Prospects

As AI-driven tools continue to evolve, the integration of MCP elicitation offers a promising avenue for enhancing user interactions. This approach not only simplifies the user experience but also aligns AI operations with user preferences, paving the way for more intuitive and responsive applications.

Image source: Shutterstock


Source: https://blockchain.news/news/enhancing-ai-interactions-mcp-elicitation